Acids and Bases Review

1. Consider the following equilibrium:

$$
\mathrm{HOI}+\mathrm{F}^{-} \leftrightarrow \mathrm{OI}^{-}+\mathrm{HF}
$$

Reactants are favored in this equilibrium. Which of the following describes the relative strengths of the acids and the bases?

Stronger Acid
A) HF
B) HF
C) HOI
D) HOI

Stronger Base
F^{-}
OI^{-}
F^{-}
OI^{-}
2. The pH of a $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ is about 1.0 and the pH of a $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{H}_{3} \mathrm{PO}_{4}$ is about 1.6 . Which of the following best explains the difference?
A) HCl is more ionized than $\mathrm{H}_{3} \mathrm{PO}_{4}$
B) HCl is a weaker acid than $\mathrm{H}_{3} \mathrm{PO}_{4}$.
C) $\mathrm{H}_{3} \mathrm{PO}_{4}$ is amphoteric (amphiprotic) in water.
D) $\mathrm{H}_{3} \mathrm{PO}_{4}$ has more hydrogen atoms.
3. The K_{a} of a weak acid, HNO_{2} is 5.1×10^{-4}. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a $0.10 \mathrm{~mol} / \mathrm{L}$ solution of this acid?
4. What is the pH of a $0.015 \mathrm{~mol} / \mathrm{L}$ aqueous solution of HCl (hydrochloric acid)?
5. The initial concentration of the acid HX is $0.16 \mathrm{~mol} / \mathrm{L}$. If the equilibrium concentration of the $\mathrm{H}_{3} \mathrm{O}^{+}$is $5.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$, what is the percent dissociation?
6. Which statement is TRUE for the following reaction?

$$
\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CN}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

A) $\mathrm{HCN}(\mathrm{aq})$ is an acid and $\mathrm{CN}^{-}(\mathrm{aq})$ is its conjugate base
B) $\mathrm{HCN}(\mathrm{aq})$ is an acid and $\mathrm{H}_{2} \mathrm{O}(1)$ is its conjugate base
C) $\mathrm{H}_{2} \mathrm{O}(1)$ is an acid and $\mathrm{HCN}(\mathrm{aq})$ is its conjugate base
D) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is an acid and $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ is its conjugate base.
7. The equilibrium constants for the weak acids $\mathrm{HOCl}, \mathrm{HCN}$ and HF are $3.5 \times 10^{-8}, 6.2 \times 10^{-10}$ and 7.2×10^{-4} respectively. Which of the following is the correct order of increasing conjugate base strength?
A) $\mathrm{OCl}^{-}, \mathrm{CN}^{-}, \mathrm{F}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NO}_{3}{ }^{-}$
B) $\mathrm{CN}^{-}, \mathrm{OCl}^{-}, \mathrm{F}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NO}_{3}{ }^{-}$
C) $\mathrm{NO}_{3}^{-}, \mathrm{F}^{-}, \mathrm{OCl}^{-}, \mathrm{CN}^{-}, \mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{NO}_{3}{ }^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{F}^{-}, \mathrm{OCl}^{-}, \mathrm{CN}^{-}$
8. In a titration experiment, 20.0 mL of HBr was needed to completely neutralize 40.0 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{KOH}$. What was the concentration of the acid?
9. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a $0.2 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(\mathrm{aq})$ solution?
10. What happens to the concentration of the hydroxide ion if the pH decreases from 11.5 to 8.5 during a reaction?
A) It decreases by a factor of 3 .
B) It decreases by a factor of 1000 .
C) It increases by a factor of 3 .
D) It increases by a factor of 1000 .
11. Which of the following salts has an aqueous solution with a pH less than 7.00 ?
A) NaCl
B) LiOH
C) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
D) $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
12. Boric acid, HBrO_{3}, is weak acid sometimes used as a detergent. At $25^{\circ} \mathrm{C}, 0.1 \mathrm{~mol} / \mathrm{L} \mathrm{HBrO}_{3}$ solution has a pH of 3.56. Calculate the K_{a} for boric acid.
13. Calculate the pH of a $0.25 \mathrm{~mol} / \mathrm{L}$ solution of NaHCO_{3}, a basic salt.
14. Which of the following are strong acid and which are weak acids?
a. $\mathrm{HCl}(\mathrm{aq})$
b. $\mathrm{HF}(\mathrm{aq})$
c. $\mathrm{HCN}(\mathrm{aq})$
d. $\mathrm{HClO}_{4}(\mathrm{aq})$
e. $\mathrm{HBr}(\mathrm{aq})$
f. $\mathrm{HNO}_{3}(\mathrm{aq})$
g. $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
15. Write the expression for the acid dissociation constant, K_{a}, of acetic acid.
16. What is the pH of the following solutions:
a. $0.01 \mathrm{~mol} / \mathrm{L} \mathrm{HClO}_{4}$
b. $0.01 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$
c. Pure water
17. Calculate the pH of $0.50 \mathrm{~mol} / \mathrm{L} \mathrm{KF}$.
18. What is the pH of a $0.0150 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{2}$ solution? $\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-4}$.
19. A solution has an $\left[\mathrm{OH}^{-}\right]$of $2.0 \mathrm{~mol} / \mathrm{L}$. What is the pH ? Is this an acidic or basic solution?
20. What is the concentration of OH^{-}ions in a $1 \mathrm{~mol} / \mathrm{L}$ solution of a strong monoprotic (only has one hydrogen) acid?

