Acids and Bases Review

1. Consider the following equilibrium:

$$HOI + F^- \leftrightarrow OI^- + HF$$

Reactants are favored in this equilibrium. Which of the following describes the relative strengths of the acids and the bases?

Stronger Acid	Stronger Base
A) HF	F^{-}
B) HF	OI_
C) HOI	F^{-}
D) HOI	OI-

- 2. The pH of a 0.10 mol/L HCl is about 1.0 and the pH of a 0.10 mol/L H₃PO₄ is about 1.6. Which of the following best explains the difference?
 - A) HCl is more ionized than H₃PO₄
 - B) HCl is a weaker acid than H₃PO₄.
 - C) H₃PO₄ is amphoteric (amphiprotic) in water.
 - D) H₃PO₄ has more hydrogen atoms.
- 3. The K_a of a weak acid, HNO₂ is 5.1 x 10^{-4} . What is the $[H_3O^+]$ of a 0.10 mol/L solution of this acid?
- 4. What is the pH of a 0.015 mol/L aqueous solution of HCl (hydrochloric acid)?
- 5. The initial concentration of the acid HX is 0.16 mol/L. If the equilibrium concentration of the H_3O^+ is $5.0 \times 10^{-3} \text{ mol/L}$, what is the percent dissociation?
- 6. Which statement is **TRUE** for the following reaction?

$$HCN(aq) + H_2O(1) \rightarrow CN^-(aq) + H_3O^+(aq)$$

- A) HCN(aq) is an acid and CN⁻(aq) is its conjugate base
- B) HCN(aq) is an acid and H₂O(l) is its conjugate base
- C) H₂O(l) is an acid and HCN(aq) is its conjugate base
- D) $H_2O(1)$ is an acid and $H_3O^+(aq)$ is its conjugate base.
- 7. The equilibrium constants for the weak acids HOCl, HCN and HF are 3.5×10^{-8} , 6.2×10^{-10} and 7.2×10^{-4} respectively. Which of the following is the correct order of increasing conjugate base strength?
 - A) OCl⁻, CN⁻, F⁻, H₂O, NO₃⁻
 - B) CN⁻, OCl⁻, F⁻, H₂O, NO₃⁻
 - C) NO₃⁻, F⁻, OCl⁻, CN⁻, H₂O
 - D) NO₃⁻, H₂O, F⁻, OCl⁻, CN⁻

- 8. In a titration experiment, 20.0 mL of HBr was needed to completely neutralize 40.0 mL of 0.10 mol/L KOH. What was the concentration of the acid?
- 9. What is the $[H_3O^+]$ in a 0.2 mol/L NaOH(aq) solution?
- 10. What happens to the concentration of the hydroxide ion if the pH decreases from 11.5 to 8.5 during a reaction?
 - A) It decreases by a factor of 3.
 - B) It decreases by a factor of 1000.
 - C) It increases by a factor of 3.
 - D) It increases by a factor of 1000.
- 11. Which of the following salts has an aqueous solution with a pH less than 7.00?
 - A) NaCl

B) LiOH

C) NH₄NO₃

- D) KC₂H₃O₂
- 12. Boric acid, $HBrO_3$, is weak acid sometimes used as a detergent. At $25^{\circ}C$, $0.1 \text{ mol/L } HBrO_3$ solution has a pH of 3.56. Calculate the K_a for boric acid.
- 13. Calculate the pH of a 0.25 mol/L solution of NaHCO₃, a basic salt.
- 14. Which of the following are strong acid and which are weak acids?
 - a. HCl(aq)
 - b. HF(aq)
 - c. HCN(aq)
 - d. HClO₄(aq)
 - e. HBr(aq)
 - f. $HNO_3(aq)$
 - g. $H_3PO_4(aq)$
- 15. Write the expression for the acid dissociation constant, Ka, of acetic acid.
- 16. What is the pH of the following solutions:
 - a. 0.01 mol/L HClO₄
 - b. 0.01 mol/L NaOH
 - c. Pure water
- 17. Calculate the pH of 0.50 mol/L KF.
- 18. What is the pH of a 0.0150 mol/L HNO₂ solution? $K_a = 4.5 \times 10^{-4}$.
- 19. A solution has an [OH] of 2.0 mol/L. What is the pH? Is this an acidic or basic solution?
- 20. What is the concentration of OH ions in a 1 mol/L solution of a strong monoprotic (only has one hydrogen) acid?

CH40S Page 2 of 2